3.2.35 \(\int (d \tan (e+f x))^{5/2} (a+i a \tan (e+f x)) \, dx\) [135]

3.2.35.1 Optimal result
3.2.35.2 Mathematica [A] (verified)
3.2.35.3 Rubi [A] (verified)
3.2.35.4 Maple [B] (verified)
3.2.35.5 Fricas [B] (verification not implemented)
3.2.35.6 Sympy [F]
3.2.35.7 Maxima [B] (verification not implemented)
3.2.35.8 Giac [A] (verification not implemented)
3.2.35.9 Mupad [B] (verification not implemented)

3.2.35.1 Optimal result

Integrand size = 26, antiderivative size = 107 \[ \int (d \tan (e+f x))^{5/2} (a+i a \tan (e+f x)) \, dx=-\frac {2 (-1)^{3/4} a d^{5/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )}{f}-\frac {2 i a d^2 \sqrt {d \tan (e+f x)}}{f}+\frac {2 a d (d \tan (e+f x))^{3/2}}{3 f}+\frac {2 i a (d \tan (e+f x))^{5/2}}{5 f} \]

output
-2*(-1)^(3/4)*a*d^(5/2)*arctan((-1)^(3/4)*(d*tan(f*x+e))^(1/2)/d^(1/2))/f- 
2*I*a*d^2*(d*tan(f*x+e))^(1/2)/f+2/3*a*d*(d*tan(f*x+e))^(3/2)/f+2/5*I*a*(d 
*tan(f*x+e))^(5/2)/f
 
3.2.35.2 Mathematica [A] (verified)

Time = 0.84 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.79 \[ \int (d \tan (e+f x))^{5/2} (a+i a \tan (e+f x)) \, dx=\frac {2 a \left (-15 (-1)^{3/4} d^{5/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )+d^2 \sqrt {d \tan (e+f x)} \left (-15 i+5 \tan (e+f x)+3 i \tan ^2(e+f x)\right )\right )}{15 f} \]

input
Integrate[(d*Tan[e + f*x])^(5/2)*(a + I*a*Tan[e + f*x]),x]
 
output
(2*a*(-15*(-1)^(3/4)*d^(5/2)*ArcTan[((-1)^(3/4)*Sqrt[d*Tan[e + f*x]])/Sqrt 
[d]] + d^2*Sqrt[d*Tan[e + f*x]]*(-15*I + 5*Tan[e + f*x] + (3*I)*Tan[e + f* 
x]^2)))/(15*f)
 
3.2.35.3 Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.346, Rules used = {3042, 4011, 3042, 4011, 3042, 4011, 3042, 4016, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a+i a \tan (e+f x)) (d \tan (e+f x))^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (a+i a \tan (e+f x)) (d \tan (e+f x))^{5/2}dx\)

\(\Big \downarrow \) 4011

\(\displaystyle \int (d \tan (e+f x))^{3/2} (a d \tan (e+f x)-i a d)dx+\frac {2 i a (d \tan (e+f x))^{5/2}}{5 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (d \tan (e+f x))^{3/2} (a d \tan (e+f x)-i a d)dx+\frac {2 i a (d \tan (e+f x))^{5/2}}{5 f}\)

\(\Big \downarrow \) 4011

\(\displaystyle \int \sqrt {d \tan (e+f x)} \left (-a d^2-i a \tan (e+f x) d^2\right )dx+\frac {2 i a (d \tan (e+f x))^{5/2}}{5 f}+\frac {2 a d (d \tan (e+f x))^{3/2}}{3 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {d \tan (e+f x)} \left (-a d^2-i a \tan (e+f x) d^2\right )dx+\frac {2 i a (d \tan (e+f x))^{5/2}}{5 f}+\frac {2 a d (d \tan (e+f x))^{3/2}}{3 f}\)

\(\Big \downarrow \) 4011

\(\displaystyle \int \frac {i a d^3-a d^3 \tan (e+f x)}{\sqrt {d \tan (e+f x)}}dx-\frac {2 i a d^2 \sqrt {d \tan (e+f x)}}{f}+\frac {2 i a (d \tan (e+f x))^{5/2}}{5 f}+\frac {2 a d (d \tan (e+f x))^{3/2}}{3 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {i a d^3-a d^3 \tan (e+f x)}{\sqrt {d \tan (e+f x)}}dx-\frac {2 i a d^2 \sqrt {d \tan (e+f x)}}{f}+\frac {2 i a (d \tan (e+f x))^{5/2}}{5 f}+\frac {2 a d (d \tan (e+f x))^{3/2}}{3 f}\)

\(\Big \downarrow \) 4016

\(\displaystyle -\frac {2 a^2 d^6 \int \frac {1}{i a d^4+a \tan (e+f x) d^4}d\sqrt {d \tan (e+f x)}}{f}-\frac {2 i a d^2 \sqrt {d \tan (e+f x)}}{f}+\frac {2 a d (d \tan (e+f x))^{3/2}}{3 f}+\frac {2 i a (d \tan (e+f x))^{5/2}}{5 f}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {2 (-1)^{3/4} a d^{5/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )}{f}-\frac {2 i a d^2 \sqrt {d \tan (e+f x)}}{f}+\frac {2 a d (d \tan (e+f x))^{3/2}}{3 f}+\frac {2 i a (d \tan (e+f x))^{5/2}}{5 f}\)

input
Int[(d*Tan[e + f*x])^(5/2)*(a + I*a*Tan[e + f*x]),x]
 
output
(-2*(-1)^(3/4)*a*d^(5/2)*ArcTan[((-1)^(3/4)*Sqrt[d*Tan[e + f*x]])/Sqrt[d]] 
)/f - ((2*I)*a*d^2*Sqrt[d*Tan[e + f*x]])/f + (2*a*d*(d*Tan[e + f*x])^(3/2) 
)/(3*f) + (((2*I)/5)*a*(d*Tan[e + f*x])^(5/2))/f
 

3.2.35.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4011
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[d*((a + b*Tan[e + f*x])^m/(f*m)), x] + Int 
[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x], x] 
, x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 
 0] && GtQ[m, 0]
 

rule 4016
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2*(c^2/f)   Subst[Int[1/(b*c - d*x^2), x], x, Sqrt[b 
*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]
 
3.2.35.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 320 vs. \(2 (85 ) = 170\).

Time = 0.79 (sec) , antiderivative size = 321, normalized size of antiderivative = 3.00

method result size
derivativedivides \(\frac {a \left (\frac {2 i \left (d \tan \left (f x +e \right )\right )^{\frac {5}{2}}}{5}+\frac {2 d \left (d \tan \left (f x +e \right )\right )^{\frac {3}{2}}}{3}-2 i d^{2} \sqrt {d \tan \left (f x +e \right )}+2 d^{3} \left (\frac {i \left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 d}-\frac {\sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (d^{2}\right )^{\frac {1}{4}}}\right )\right )}{f}\) \(321\)
default \(\frac {a \left (\frac {2 i \left (d \tan \left (f x +e \right )\right )^{\frac {5}{2}}}{5}+\frac {2 d \left (d \tan \left (f x +e \right )\right )^{\frac {3}{2}}}{3}-2 i d^{2} \sqrt {d \tan \left (f x +e \right )}+2 d^{3} \left (\frac {i \left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 d}-\frac {\sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (d^{2}\right )^{\frac {1}{4}}}\right )\right )}{f}\) \(321\)
parts \(\frac {2 a d \left (\frac {\left (d \tan \left (f x +e \right )\right )^{\frac {3}{2}}}{3}-\frac {d^{2} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (d^{2}\right )^{\frac {1}{4}}}\right )}{f}+\frac {i a \left (\frac {2 \left (d \tan \left (f x +e \right )\right )^{\frac {5}{2}}}{5}-2 d^{2} \sqrt {d \tan \left (f x +e \right )}+\frac {d^{2} \left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4}\right )}{f}\) \(325\)

input
int((d*tan(f*x+e))^(5/2)*(a+I*a*tan(f*x+e)),x,method=_RETURNVERBOSE)
 
output
1/f*a*(2/5*I*(d*tan(f*x+e))^(5/2)+2/3*d*(d*tan(f*x+e))^(3/2)-2*I*d^2*(d*ta 
n(f*x+e))^(1/2)+2*d^3*(1/8*I/d*(d^2)^(1/4)*2^(1/2)*(ln((d*tan(f*x+e)+(d^2) 
^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2))/(d*tan(f*x+e)-(d^2)^(1/4) 
*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2)))+2*arctan(2^(1/2)/(d^2)^(1/4)*( 
d*tan(f*x+e))^(1/2)+1)-2*arctan(-2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+ 
1))-1/8/(d^2)^(1/4)*2^(1/2)*(ln((d*tan(f*x+e)-(d^2)^(1/4)*(d*tan(f*x+e))^( 
1/2)*2^(1/2)+(d^2)^(1/2))/(d*tan(f*x+e)+(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2 
^(1/2)+(d^2)^(1/2)))+2*arctan(2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1)- 
2*arctan(-2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1))))
 
3.2.35.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 371 vs. \(2 (83) = 166\).

Time = 0.25 (sec) , antiderivative size = 371, normalized size of antiderivative = 3.47 \[ \int (d \tan (e+f x))^{5/2} (a+i a \tan (e+f x)) \, dx=-\frac {15 \, \sqrt {\frac {4 i \, a^{2} d^{5}}{f^{2}}} {\left (f e^{\left (4 i \, f x + 4 i \, e\right )} + 2 \, f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )} \log \left (\frac {{\left (-2 i \, a d^{3} e^{\left (2 i \, f x + 2 i \, e\right )} + \sqrt {\frac {4 i \, a^{2} d^{5}}{f^{2}}} {\left (i \, f e^{\left (2 i \, f x + 2 i \, e\right )} + i \, f\right )} \sqrt {\frac {-i \, d e^{\left (2 i \, f x + 2 i \, e\right )} + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}\right )} e^{\left (-2 i \, f x - 2 i \, e\right )}}{a d^{2}}\right ) - 15 \, \sqrt {\frac {4 i \, a^{2} d^{5}}{f^{2}}} {\left (f e^{\left (4 i \, f x + 4 i \, e\right )} + 2 \, f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )} \log \left (\frac {{\left (-2 i \, a d^{3} e^{\left (2 i \, f x + 2 i \, e\right )} + \sqrt {\frac {4 i \, a^{2} d^{5}}{f^{2}}} {\left (-i \, f e^{\left (2 i \, f x + 2 i \, e\right )} - i \, f\right )} \sqrt {\frac {-i \, d e^{\left (2 i \, f x + 2 i \, e\right )} + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}\right )} e^{\left (-2 i \, f x - 2 i \, e\right )}}{a d^{2}}\right ) + 8 \, {\left (23 i \, a d^{2} e^{\left (4 i \, f x + 4 i \, e\right )} + 24 i \, a d^{2} e^{\left (2 i \, f x + 2 i \, e\right )} + 13 i \, a d^{2}\right )} \sqrt {\frac {-i \, d e^{\left (2 i \, f x + 2 i \, e\right )} + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}}{60 \, {\left (f e^{\left (4 i \, f x + 4 i \, e\right )} + 2 \, f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )}} \]

input
integrate((d*tan(f*x+e))^(5/2)*(a+I*a*tan(f*x+e)),x, algorithm="fricas")
 
output
-1/60*(15*sqrt(4*I*a^2*d^5/f^2)*(f*e^(4*I*f*x + 4*I*e) + 2*f*e^(2*I*f*x + 
2*I*e) + f)*log((-2*I*a*d^3*e^(2*I*f*x + 2*I*e) + sqrt(4*I*a^2*d^5/f^2)*(I 
*f*e^(2*I*f*x + 2*I*e) + I*f)*sqrt((-I*d*e^(2*I*f*x + 2*I*e) + I*d)/(e^(2* 
I*f*x + 2*I*e) + 1)))*e^(-2*I*f*x - 2*I*e)/(a*d^2)) - 15*sqrt(4*I*a^2*d^5/ 
f^2)*(f*e^(4*I*f*x + 4*I*e) + 2*f*e^(2*I*f*x + 2*I*e) + f)*log((-2*I*a*d^3 
*e^(2*I*f*x + 2*I*e) + sqrt(4*I*a^2*d^5/f^2)*(-I*f*e^(2*I*f*x + 2*I*e) - I 
*f)*sqrt((-I*d*e^(2*I*f*x + 2*I*e) + I*d)/(e^(2*I*f*x + 2*I*e) + 1)))*e^(- 
2*I*f*x - 2*I*e)/(a*d^2)) + 8*(23*I*a*d^2*e^(4*I*f*x + 4*I*e) + 24*I*a*d^2 
*e^(2*I*f*x + 2*I*e) + 13*I*a*d^2)*sqrt((-I*d*e^(2*I*f*x + 2*I*e) + I*d)/( 
e^(2*I*f*x + 2*I*e) + 1)))/(f*e^(4*I*f*x + 4*I*e) + 2*f*e^(2*I*f*x + 2*I*e 
) + f)
 
3.2.35.6 Sympy [F]

\[ \int (d \tan (e+f x))^{5/2} (a+i a \tan (e+f x)) \, dx=i a \left (\int \left (- i \left (d \tan {\left (e + f x \right )}\right )^{\frac {5}{2}}\right )\, dx + \int \left (d \tan {\left (e + f x \right )}\right )^{\frac {5}{2}} \tan {\left (e + f x \right )}\, dx\right ) \]

input
integrate((d*tan(f*x+e))**(5/2)*(a+I*a*tan(f*x+e)),x)
 
output
I*a*(Integral(-I*(d*tan(e + f*x))**(5/2), x) + Integral((d*tan(e + f*x))** 
(5/2)*tan(e + f*x), x))
 
3.2.35.7 Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 209 vs. \(2 (83) = 166\).

Time = 0.47 (sec) , antiderivative size = 209, normalized size of antiderivative = 1.95 \[ \int (d \tan (e+f x))^{5/2} (a+i a \tan (e+f x)) \, dx=\frac {15 \, a d^{4} {\left (\frac {\left (2 i - 2\right ) \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} + 2 \, \sqrt {d \tan \left (f x + e\right )}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} + \frac {\left (2 i - 2\right ) \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} - 2 \, \sqrt {d \tan \left (f x + e\right )}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} + \frac {\left (i + 1\right ) \, \sqrt {2} \log \left (d \tan \left (f x + e\right ) + \sqrt {2} \sqrt {d \tan \left (f x + e\right )} \sqrt {d} + d\right )}{\sqrt {d}} - \frac {\left (i + 1\right ) \, \sqrt {2} \log \left (d \tan \left (f x + e\right ) - \sqrt {2} \sqrt {d \tan \left (f x + e\right )} \sqrt {d} + d\right )}{\sqrt {d}}\right )} + 24 i \, \left (d \tan \left (f x + e\right )\right )^{\frac {5}{2}} a d + 40 \, \left (d \tan \left (f x + e\right )\right )^{\frac {3}{2}} a d^{2} - 120 i \, \sqrt {d \tan \left (f x + e\right )} a d^{3}}{60 \, d f} \]

input
integrate((d*tan(f*x+e))^(5/2)*(a+I*a*tan(f*x+e)),x, algorithm="maxima")
 
output
1/60*(15*a*d^4*((2*I - 2)*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(d) + 2* 
sqrt(d*tan(f*x + e)))/sqrt(d))/sqrt(d) + (2*I - 2)*sqrt(2)*arctan(-1/2*sqr 
t(2)*(sqrt(2)*sqrt(d) - 2*sqrt(d*tan(f*x + e)))/sqrt(d))/sqrt(d) + (I + 1) 
*sqrt(2)*log(d*tan(f*x + e) + sqrt(2)*sqrt(d*tan(f*x + e))*sqrt(d) + d)/sq 
rt(d) - (I + 1)*sqrt(2)*log(d*tan(f*x + e) - sqrt(2)*sqrt(d*tan(f*x + e))* 
sqrt(d) + d)/sqrt(d)) + 24*I*(d*tan(f*x + e))^(5/2)*a*d + 40*(d*tan(f*x + 
e))^(3/2)*a*d^2 - 120*I*sqrt(d*tan(f*x + e))*a*d^3)/(d*f)
 
3.2.35.8 Giac [A] (verification not implemented)

Time = 0.61 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.36 \[ \int (d \tan (e+f x))^{5/2} (a+i a \tan (e+f x)) \, dx=-\frac {2}{15} \, a d {\left (\frac {15 \, \sqrt {2} d^{\frac {3}{2}} \arctan \left (\frac {8 \, \sqrt {d^{2}} \sqrt {d \tan \left (f x + e\right )}}{4 i \, \sqrt {2} d^{\frac {3}{2}} + 4 \, \sqrt {2} \sqrt {d^{2}} \sqrt {d}}\right )}{f {\left (\frac {i \, d}{\sqrt {d^{2}}} + 1\right )}} + \frac {-3 i \, \sqrt {d \tan \left (f x + e\right )} d^{6} f^{4} \tan \left (f x + e\right )^{2} - 5 \, \sqrt {d \tan \left (f x + e\right )} d^{6} f^{4} \tan \left (f x + e\right ) + 15 i \, \sqrt {d \tan \left (f x + e\right )} d^{6} f^{4}}{d^{5} f^{5}}\right )} \]

input
integrate((d*tan(f*x+e))^(5/2)*(a+I*a*tan(f*x+e)),x, algorithm="giac")
 
output
-2/15*a*d*(15*sqrt(2)*d^(3/2)*arctan(8*sqrt(d^2)*sqrt(d*tan(f*x + e))/(4*I 
*sqrt(2)*d^(3/2) + 4*sqrt(2)*sqrt(d^2)*sqrt(d)))/(f*(I*d/sqrt(d^2) + 1)) + 
 (-3*I*sqrt(d*tan(f*x + e))*d^6*f^4*tan(f*x + e)^2 - 5*sqrt(d*tan(f*x + e) 
)*d^6*f^4*tan(f*x + e) + 15*I*sqrt(d*tan(f*x + e))*d^6*f^4)/(d^5*f^5))
 
3.2.35.9 Mupad [B] (verification not implemented)

Time = 5.29 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.07 \[ \int (d \tan (e+f x))^{5/2} (a+i a \tan (e+f x)) \, dx=\frac {2\,a\,d\,{\left (d\,\mathrm {tan}\left (e+f\,x\right )\right )}^{3/2}}{3\,f}+\frac {{\left (-1\right )}^{1/4}\,a\,d^{5/2}\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}}{\sqrt {d}}\right )}{f}+\frac {a\,{\left (d\,\mathrm {tan}\left (e+f\,x\right )\right )}^{5/2}\,2{}\mathrm {i}}{5\,f}-\frac {a\,d^2\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}\,2{}\mathrm {i}}{f}-\frac {{\left (-1\right )}^{1/4}\,a\,d^{5/2}\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}\,1{}\mathrm {i}}{\sqrt {d}}\right )\,1{}\mathrm {i}}{f} \]

input
int((d*tan(e + f*x))^(5/2)*(a + a*tan(e + f*x)*1i),x)
 
output
(a*(d*tan(e + f*x))^(5/2)*2i)/(5*f) + (2*a*d*(d*tan(e + f*x))^(3/2))/(3*f) 
 - (a*d^2*(d*tan(e + f*x))^(1/2)*2i)/f - ((-1)^(1/4)*a*d^(5/2)*atan(((-1)^ 
(1/4)*(d*tan(e + f*x))^(1/2)*1i)/d^(1/2))*1i)/f + ((-1)^(1/4)*a*d^(5/2)*at 
anh(((-1)^(1/4)*(d*tan(e + f*x))^(1/2))/d^(1/2)))/f